
ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY & SCIENCES Department of Electrical & Electronics Engineering III/IV B. Tech., Semester-II

Control systems ASSIGNMENT-I

4	a	Derive the transfer function for armature controlled D.C Motor.	CO1
	b	Derive the transfer function for field controlled D.C Motor.	CO2
5	a	Write the importance of Mason's gain formula? Explain the procedure for converting block diagram to signal flow graph.	CO2
6	a	Write the equations describing the motion of the mechanical system shown in Fig. Also find the transfer function X1(s)/F(s). $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	CO1
	b	i) Write the analogous electrical elements in force - voltage analogy for the elements of mechanical translational system.ii) Write the analogous electrical elements in torque - voltage analogy for the elements of mechanical rotational system.	CO2
7		Distinguish between open loop and closed loop control systems.	CO2
8		Write the equations describing the motion of the mechanical rational system shown in fig. below. Also find the transfer function $\theta_1(s)/T(s)$. $\theta_1 \qquad \qquad$	CO2
9		G_1 G_2 G_3 $-H_1$ $-H_2$ Obtain the closed loop transfer function for the above signal flow graph.	CO2

10	a	Explain how the unit ramp response of first order system is obtained and what	CO3
		is its significance?	
	b	The open loop transfer function of a variety of feedback system is given by	CO3
		$G(s) = \frac{k}{s(1+sT)}$. By what factor the gain k should be multiplied so that the	
		damping ratio is increased from 0.2 to 0.8?	
11		Describe the time domain specifications of a second order control system.	CO3
12		Explain the effect of derivative controller on the time response of a typical	CO3
		second order system.	
13	а	Derive an expression to find the rise time of the time response of a typical	CO3
		second order system.	
	b	Show that for a second order system, the overshoot of the step response is only	CO3
		a function of the damping ratio.	
14		The open loop transfer function of a control system with unity feedback system	CO2
		has $G(s) = \frac{500}{s(1+0.1s)}$. Evaluate the error series for the system and determine	
		the steady state error of the system for an input of	
		$r(t) = 1 + 2t + t^2; t > 0.$	